EphA4-mediated ipsilateral corticospinal tract misprojections are necessary for bilateral voluntary movements but not bilateral stereotypic locomotion.

نویسندگان

  • Najet Serradj
  • Sónia Paixão
  • Tomasz Sobocki
  • Mitchell Feinberg
  • Rüdiger Klein
  • Klas Kullander
  • John H Martin
چکیده

In this study, we took advantage of the reported role of EphA4 in determining the contralateral spinal projection of the corticospinal tract (CST) to investigate the effects of ipsilateral misprojections on voluntary movements and stereotypic locomotion. Null EphA4 mutations produce robust ipsilateral CST misprojections, resulting in bilateral corticospinal tracts. We hypothesize that a unilateral voluntary limb movement, not a stereotypic locomotor movement, will become a bilateral movement in EphA4 knock-out mice with a bilateral CST. However, in EphA4 full knock-outs, spinal interneurons also develop bilateral misprojections. Aberrant bilateral spinal circuits could thus transform unilateral corticospinal control signals into bilateral movements. We therefore studied mice with conditional forebrain deletion of the EphA4 gene under control by Emx1, a gene expressed in the forebrain that affects the developing CST but spares brainstem motor pathways and spinal motor circuits. We examined two conditional knock-outs targeting forebrain EphA4 during performance of stereotypic locomotion and voluntary movement: adaptive locomotion over obstacles and exploratory reaching. We found that the conditional knock-outs used alternate stepping, not hopping, during overground locomotion, suggesting normal central pattern generator function and supporting our hypothesis of minimal CST involvement in the moment-to-moment control of stereotypic locomotion. In contrast, the conditional knock-outs showed bilateral voluntary movements under conditions when single limb movements are normally produced and, as a basis for this aberrant control, developed a bilateral motor map in motor cortex that is driven by the aberrant ipsilateral CST misprojections. Therefore, a specific change in CST connectivity is associated with and explains a change in voluntary movement.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cortical control of adaptive locomotion in wild-type mice and mutant mice lacking the ephrin-Eph effector protein alpha2-chimaerin.

In voluntary control, supraspinal motor systems select the appropriate response and plan movement mechanics to match task constraints. Spinal circuits translate supraspinal drive into action. We studied the interplay between motor cortex (M1) and spinal circuits during voluntary movements in wild-type (WT) mice and mice lacking the α2-chimaerin gene (Chn1(-/-)), necessary for ephrinB3-EphA4 sig...

متن کامل

Motor Experience Reprograms Development of a Genetically-Altered Bilateral Corticospinal Motor Circuit

Evidence suggests that motor experience plays a role in shaping development of the corticospinal system and voluntary motor control, which is a key motor function of the system. Here we used a mouse model with conditional forebrain deletion of the gene for EphA4 (Emx1-Cre:EphA4tm2Kldr), which regulates development of the laterality of corticospinal tract (CST). We combined study of Emx1-Cre:Eph...

متن کامل

Forward Signaling Mediated by Ephrin-B3 Prevents Contralateral Corticospinal Axons from Recrossing the Spinal Cord Midline

To investigate Eph-ephrin bidirectional signaling, a series of mutations were generated in the ephrin-B3 locus. The absence of both forward and reverse signaling resulted in mice with mirror movements as typified by a hopping locomotion. The corticospinal tract was defective as axons failed to respect the midline boundary of the spinal cord and bilaterally innervated both contralateral and ipsi...

متن کامل

Bilateral activity-dependent interactions in the developing corticospinal system.

Activity-dependent competition between the corticospinal (CS) systems in each hemisphere drives postnatal development of motor skills and stable CS tract connections with contralateral spinal motor circuits. Unilateral restriction of motor cortex (M1) activity during an early postnatal critical period impairs contralateral visually guided movements later in development and in maturity. Silenced...

متن کامل

Dominance of ipsilateral corticospinal pathway in congenital mirror movements.

OBJECTIVE To clarify the mechanism of congenital mirror movements. DESIGN The triple stimulation technique (TST) and the silent period were used to investigate a patient with congenital mirror movements. The TST was used to calculate the ratio of ipsilateral to contralateral corticospinal tracts from the two hemispheres to the spinal motor neurones. RESULTS Transcranial magnetic stimulation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 34 15  شماره 

صفحات  -

تاریخ انتشار 2014